[wordup] 'Thirst for knowledge' may be opium craving
Adam Shand
ashand at wetafx.co.nz
Wed Jun 21 22:42:47 EDT 2006
From: http://www.eurekalert.org/pub_releases/2006-06/uosc-fk062006.php
'Thirst for knowledge' may be opium craving
20-Jun-2006
The brain's reward for getting a concept is a shot of natural opiates
Neuroscientists have proposed a simple explanation for the pleasure
of grasping a new concept: The brain is getting its fix.
The "click" of comprehension triggers a biochemical cascade that
rewards the brain with a shot of natural opium-like substances, said
Irving Biederman of the University of Southern California. He
presents his theory in an invited article in the latest issue of
American Scientist.
"While you're trying to understand a difficult theorem, it's not
fun," said Biederman, professor of neuroscience in the USC College of
Letters, Arts and Sciences.
"But once you get it, you just feel fabulous."
The brain's craving for a fix motivates humans to maximize the rate
at which they absorb knowledge, he said.
"I think we're exquisitely tuned to this as if we're junkies, second
by second."
Biederman hypothesized that knowledge addiction has strong
evolutionary value because mate selection correlates closely with
perceived intelligence.
Only more pressing material needs, such as hunger, can suspend the
quest for knowledge, he added.
The same mechanism is involved in the aesthetic experience, Biederman
said, providing a neurological explanation for the pleasure we derive
from art.
"This account may provide a plausible and very simple mechanism for
aesthetic and perceptual and cognitive curiosity."
Biederman's theory was inspired by a widely ignored 25-year-old
finding that mu-opioid receptors – binding sites for natural opiates
– increase in density along the ventral visual pathway, a part of the
brain involved in image recognition and processing.
The receptors are tightly packed in the areas of the pathway linked
to comprehension and interpretation of images, but sparse in areas
where visual stimuli first hit the cortex.
Biederman's theory holds that the greater the neural activity in the
areas rich in opioid receptors, the greater the pleasure.
In a series of functional magnetic resonance imaging trials with
human volunteers exposed to a wide variety of images, Biederman's
research group found that strongly preferred images prompted the
greatest fMRI activity in more complex areas of the ventral visual
pathway. (The data from the studies are being submitted for
publication.)
Biederman also found that repeated viewing of an attractive image
lessened both the rating of pleasure and the activity in the opioid-
rich areas. In his article, he explains this familiar experience with
a neural-network model termed "competitive learning."
In competitive learning (also known as "Neural Darwinism"), the first
presentation of an image activates many neurons, some strongly and a
greater number only weakly.
With repetition of the image, the connections to the strongly
activated neurons grow in strength. But the strongly activated
neurons inhibit their weakly activated neighbors, causing a net
reduction in activity. This reduction in activity, Biederman's
research shows, parallels the decline in the pleasure felt during
repeated viewing.
"One advantage of competitive learning is that the inhibited neurons
are now free to code for other stimulus patterns," Biederman writes.
This preference for novel concepts also has evolutionary value, he
added.
"The system is essentially designed to maximize the rate at which you
acquire new but interpretable [understandable] information. Once you
have acquired the information, you best spend your time learning
something else.
"There's this incredible selectivity that we show in real time.
Without thinking about it, we pick out experiences that are richly
interpretable but novel."
The theory, while currently tested only in the visual system, likely
applies to other senses, Biederman said.
###
Edward Vessel, who was Biederman's graduate student at USC, is now a
postdoctoral fellow at the Center for Neural Science at New York
University. Vessel collaborated on the studies and co-authored the
American Scientist article.
More information about the wordup
mailing list